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Abstract 

This study investigates the asymmetric effect of autocorrelated error of hierarchical model via Bayesian paradigm. The study 

employed full Bayesian experiment by considering the marginal conditional posteriors density of the model parameters 

estimate. The extreme cases of autocorrelated error were considered by selecting -0.99 and 0.99 for rho.  The seed was set to 

12345;   were set at 2.5, 1.5, 0.5; Xs variables were generated using uniform distribution. The number of replications of our 

experiment was set at 11,000 with burn-in of 1000 which specified the draws that were discarded to remove the effect of the 

initial values. The thinning was set at 5 to ensure removal of the effect of autocorrelation in Markov Chain Monte Carlo 

simulation. The study revealed that positive correlation had higher impact than negative correlation when the magnitude is 

0.9; whereas at lower correlation, negative correlation had higher impact. The study affirmed improvement in consistency 

and efficiency on the model parameters estimates. 
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1.0 Introduction 

Hierarchical linear modeling is an advanced form of ordinary least squares regression estimator which stands as analysis of 

variances in the outcome variables particularly when  regressors are at varying hierarchical levels. Both individual and pooled 

effects were considered in hierarchical modeling [1]. Assuming data are examined by ordinary least squares, such procedure 

would lack consideration of shared variance and this will tantamount to loss of standard inferences of model parameter 

estimates.  The wide spread application of hierarchical multi-level data analysis emanates from previous works of some 

researchers [2-4]. Hierarchical modeling had been applied to varied fields of studies including education, health, business, 

social works, as well as statistical techniques such as mixed level and effects, random and fixed effects, covariance 

components-modeling [4]. It is best to examine the relationship between predictors and outcome variable with the premise of 

shared variances of both levels 1 and 2. The advantage of this approach is premised on the requirement of fewer assumptions 

to be considered when exploring multilevel data [4].  
 

Hierarchical models and more general; linear and non-linear mixed models are extensively applied in the natural and social 

sciences, and discussed in detail from [5, 6]. Perry [7] examined hierarchical models via a fast moment-base through 

comparison of different estimations under simulation. Bottou [8] proposed stochastic gradient descent; while other 

researchers examined  splitting strategies where data are broken into 10 subsets in which separate estimates for each subset 

are computed followed by combination of the estimates by averaging them [6, 9, 10]. Bates et al. [11] examined hierarchical 

problems with maximum likelihood, adopting gradient-free optimization procedure. 

Hierarchical linear models allow for the simultaneous investigation of the relationship within a given hierarchical level, as 

well as the relationship across levels. Two models were developed in order to achieve this; one that reflects the relationship 

within lower level units, and a second that models how the relationship within lower level units varies between units, thereby 

correcting for the violations of aggregating or disaggregating data. This study therefore examined asymmetric effects of 

autocorrelation error of level 1 in hierarchical modeling. 
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2.0 Model Designs  

2.1  Equations Underlying Hierarchical Linear Models 

 

In two-level hierarchical models, separate level-1 models (e.g., respondents’ status) are developed for each level-2 unit. They 

take the form of simple regressions developed for each individual i: 

                               (1) 

 

where: 

   = outcome variable   for ith level-1 unit nested within the jth level-2 unit, 

   =   level-1 explanatory variable, 

   = intercept for the jth level-2 unit, 

   = coefficient associated with  jth level-2 unit, and 

   =   error associated with   ith level-1 unit nested within   jth level-2 unit. 

 

In level-1, the assumption (    )  (    ) holds. In reverse, the present study violated this assumption by assuming:  (   )  

 ,    (   )            
 in level 1. 

 

In level-2 models, the level-1 parameters (   and     ) were used as dependent variables and were related to each of the 

level-2 explanatory variables. Level-2 models described the variability across multiple groups and were referred to as 

between-unit models [12]. The study considered the case of a single level-2 predictor   using equations 2 and 3. 
 

                                                                            (2) 

 

                                                                             (3) 
 

where:  

   = intercept for the jth level-2 unit; 

   = slope for the jth level-2 unit; 

  = value on the level-2 predictor; 

   = overall mean intercept adjusted for Z; 

   = overall mean intercept adjusted for Z; 

   = regression coefficient associated with Z relative to level-1 intercept; 

   = regression coefficient associated with Z relative to level-1 slope; 

   = random effects of the jth level-2 unit adjusted for Z on the intercept; 

   = random effects of the jth level-2 unit adjusted for Z on the slope. 

 

Thus level-2 models have two errors terms (    and     ) that made hierarchical linear model different from regression 

equation. The study introduced a combined model for the classification of variables and coefficients in terms of the level of 

hierarchy: 

 

                                                                                                (4) 

 

The model described in equation (4) is known as mixed model which incorporates the level-1 and level-2 predictors (    and 

   ) as deterministic and fixed, a cross-level term (     ), but the composite error (               ) made it  stochastic and 

random. 

 
Let  

   *
  

  
+   (    )                   (5) 

  is the number of parameters, 

where    *
  

  
+  and    is a     positive definite symmetric covariance matrix . 
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Priors: 

         (   ) 

        (   ) 

         ([  ]    ) 

where    denotes  Wishart  distribution. 

Likelihood: 
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Joint posterior density: 
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Complete posterior conditional for     
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Thus we have        
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Complete posterior conditional for     
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Thus we have            
     ([∑ (     )(     )

     
   ]      )    (22) 

 
2.2 Bayesian Hierarchical Models 
 

The Bayesian hierarchical modeling of autocorrelated error was presented. The pooled regression represents level one while 

individual regression denotes sub-group and both level have shared variances that ordinary least squares estimator cannot 

capture. Both negative and positive autocorrelated errors were considered. Parameters were obtained through the posterior 

point estimate of Gibbs sampler simulation. Bias and mean square error were computed to measure consistency and 

efficiency respectively. The levels of convergence of the chains were monitored [5] and graphic analysis was carried out 

using coda package in R. Multivariate normal and inverse gamma distributions were chosen as priors for parameter estimates 

     and    respectively. 

3. Results and Discussion 

3.1 Pooled Regression Absolute Bias Hierarchical Modeling with Autocorrelated Error 

The study observed that when ρ is -0.99 and 0.99, the effect of the negative autocorrelated error on the model parameter of 

the pooled estimates is less than that of positive autocorrelated error for all the parameters estimates (Table 1). Considering    

at -0.77 and 0.77, the inverse effects as compared to higher autocorrelated error of 0.99 was observed. The negative 

autocorrelated error had higher effect on the model parameters estimates compared with positive autocorrelated error for all 

the parameters as presented in Figs. 1 and 2. 

Table 1:  Absolute Bias of Bayesian Hierarchical Modeling with Autocorrelated Error 
 

 
                                      

          

 

 

 

-0.99 

   0.0024 0.0018 0.0036 0.0193 0.0403 0.0811 0.0403 

  

22.3807  

  

   0.0115 0.0036 0.0004 0.0005 0.0078 0.0049 0.0078 

   0.0093 0.0318 0.0217 0.0091 0.0019 0.0005 0.0019 

   0.0153 0.0109 0.006 0.001 0.0033 0.0136 0.0033 

 

 

 

0.99 

   0.0025 0.0018 0.0039 0.0214 0.0438 0.0831 0.0438 

  

23.49 

  

   0.0121 0.0035 0.0004 0.0006 0.0085 0.0050 0.0085 

   0.0098 0.0311 0.0234 0.0102 0.0021 0.0005 0.0021 

   0.0160 0.0106 0.0064 0.0011 0.0036 0.0139 0.0036 

-0.77 
   0.0021 0.0015 0.0035 0.0182 0.0497 0.0773 0.0498 

  

20.1284  

  

   0.0103 0.003 0.0004 0.0005 0.0096 0.0047 0.0097 

   0.0083 0.026 0.0213 0.0087 0.0024 0.0004 0.0024 

   0.0136 0.0089 0.0058 0.0009 0.0040 0.0129 0.0040 

0.77 
   0.0018 0.0018 0.0035 0.0191 0.0429 0.0764 0.0429 

  

18.6336  

  

   0.0087 0.0035 0.0003 0.0005 0.0083 0.0046 0.0083 

   0.0070 0.0311 0.0210 0.0091 0.0021 0.0004 0.0021 

   0.0115 0.0106 0.0058 0.0010 0.0035 0.0128 0.0035 
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Fig. 1: Bayesian Hierarchical Model with Asymmetric Autocorrelated error at -0.99 and 0.99 

 

 

Fig. 2: Bayesian Hierarchical Model with Asymmetric Autocorrelated error at -0.77 and 0.77 

 

3.2  Individual regression Absolute Bias Hierarchical Modeling with Autocorrelated Error 

The Mean Squares Error of Bayesian Hierarchical Model with autocorrelated error is presented in Table 2. Considering -0.99 

and 0.99 autocorrelated errors for the individual regressions, firm1 firm3, firm4, firm5 and firm6 showed that positive 

autocorrelated error had higher effects compared with negative autocorrelated error. However, the reverse is the case when 

considering firm2 in which case the negative autocorrelated error had higher effect for all the model parameters estimates. 

When considering -0.77 and 0.77 autocorrelated errors for the individual regressions; firm1 firm3, firm4, firm5 and firm6 

showed that negative autocorrelated error had higher effects compared with positive autocorrelated error, whereas the reverse 

is the case when considering firm2 where the positive autocorrelated error had higher effect for all the model parameters 

estimates. 
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Table 2: Mean Squares Error of Bayesian Hierarchical Modeling with Autocorrelated Error 

  

 

                                    
       

 

 

-0.99 

   2.3313 2.4395 1.9204 2.5149 1.6294 2.2538 1.6294 

   0.2943 0.2713 0.2331 0.2169 0.1670 0.2225 0.1674 

   0.3539 0.2613 0.229 0.2349 0.1661 0.2935 0.1661 

   0.4669 0.6594 0.3957 0.3275 0.2955 0.3324 0.2955 

 

 

0.99 

   2.5635 2.3302 2.2326 3.1064 1.9252 2.3688 1.9252 

   0.3236 0.2592 0.2709 0.2679 0.1973 0.2338 0.1973 

   0.3892 0.2496 0.2662 0.2902 0.1962 0.3085 0.1962 

   0.5134 0.6299 0.46 0.4045 0.3491 0.3493 0.3491 

 

 

-0.77 

   1.8567 1.6217 1.8473 2.2540 2.4809 2.0483 2.4809 

   0.2344 0.1804 0.2242 0.1944 0.2543 0.2022 0.2543 

   0.2819 0.1737 0.2202 0.2106 0.2529 0.2667 0.2529 

   0.3719 0.4383 0.3806 0.2935 0.4499 0.3021 0.4499 

 

 

0.77 

   1.3210 2.3246 1.8009 2.4835 1.8424 2.0013 1.8424 

   0.1668 0.2585 0.2186 0.2142 0.1888 0.1975 0.1888 

   0.2005 0.2490 0.2147 0.2320 0.1878 0.2606 0.1878 

   0.2646 0.6283 0.3711 0.3234 0.3341 0.2951 0.3341 

 

3.3 Pooled Regression Mean Squares Error Hierarchical Modeling with Autocorrelated Error 

From the mean squares error of Bayesian Hierarchical modeling with autocorrelated error, at    -0.99 and    0.99, the 

effects of the negative autocorrelated error on the model parameters estimates were lower compared with positive 

autocorrelated error for all the parameters estimates. Considering    =-0.77 and    0.77, it was observed that the negative 

autocorrelated error had higher effects on the model parameters estimates compared with positive autocorrelation for all the 

parameters. This is presented in Figs. 3 and 4. 

 

Fig. 3: Mean Squares Error of Bayesian Hierarchical Model with Asymmetric Autocorrelated error at -0.99 and 0.99 
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Fig. 4: Mean Squares Error of Bayesian Hierarchical Model with Asymmetric Autocorrelated error at -0.77 and 0.77 

 

3.4  Individual Regression Absolute Bias Hierarchical Modeling with Autocorrelated Error 

Considering -0.99 and 0.99 autocorrelated errors for the individual regressions, firm1 firm3, firm4, firm5 and firm6 showed 

that positive autocorrelated error had higher effects than negative autocorrelated error. The reverse is the case when 

considering firm2 where the negative autocorrelated error had higher effect for all the model parameters estimates compared 

with its negative autocorrelated error. When considering -0.77 and 0.77 autocorrelated errors for the individual regressions, 

firm1 firm3, firm4, firm5 and firm6 showed that negative autocorrelated error had higher effects than positive autocorrelated 

error. However, the reverse is the case when considering firm2 in which the positive autocorrelated error had higher effect for 

all the model parameters estimates compared with its negative autocorrelated error. 

 

4.0  Conclusion 

This paper presented a simple way of modeling and estimating autocorrelated error Bayesian hierarchical model with 

autocorrelated error using Gibbs sampler. The study considered asymmetric effects of autocorrelated error observed at higher 

correlation under absolute bias criterion. Findings revealed that positive autocorrelated error had higher effects on the model 

parameters estimates compared with negative autocorrelated error. At the lower autocorrelated error, the study established 

that negative autocorrelated error had higher effects on the model parameters estimates compared with positive autocorrelated 

error. The study established the same scenario for both absolute bias and mean squares errors criteria. The approach 

employed in this research can be applied to further studies in the area of linear mixed model, multi-level modeling and other 

econometrics models. 
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